

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Director General for Curricula

المملكة العربية السعودية المؤسسة العامة للتدريب التقني والمهني الإدارة العامة للمناهج

الخطط التدريبية للكليات التقنية Training Plans for Colleges of Technology

CURRICULUM FOR

Department Mechanical Engineering

Major
Automotive mechanics

A Bachelor's Degree

Semesters 1439H - 2017

Index

No.	Content	Page
1.	Program Description	2
2.	Brief Description	3
3.	Study Plan	9
4.	Cover page of Courses Detail Description	12
5.	Physics	13
6.	Thermodynamics	15
7.	Statics	17
8.	Internal combustion engines	18
9.	Control System Fundamentals	20
10.	Mechanics of Materials	22
11.	Computer Aided Simulation and Modeling	23
12.	Applied Fluid Mechanics	25
13.	Advanced Engine Management and Emission Control	27
14.	Automotive Noise and Vibration	29
15.	Applied Computer aided Vehicle Design (Solidworks)	31
16.	Advanced chassis and body control	32
17.	Vehicle Parts Design	34
18.	Fluid Power	35
19.	Vehicle Dynamics	37
20.	Automotive workshop management	39
21.	Alternative Fuel Technologies, Hybrid and Electrical Vehicles	41
22.	Heating, Ventilation and Air Conditioning	43
23.	Renewable Energy	44
24.	Turbocharging and engine boosting	46
25.	Advanced topics in automotive technology	47
26.	Appendix Laboratory Equipment, Workshops and Laboratories	48
27.	List of Detailed Equipment for Each Laboratory, Workshop or Lab	49
28.	References	52

Program Description

Program Description

Technical and Vocational Training Corporation (TVTC) is one of Saudi Arabia leading technology education for Automotive Engineering. TVTC's strong links with industry and run by Saudi government recognized academics, our Automotive Engineering program will give you the specialized expertise you need to become a professional engineer in the automotive industry, or equally provide you with the right skill set to take up a career in automotive technology flied.

Program overview

Our Automotive technology Engineering degree is a unique program that focuses on new and promising sustainable automotive technologies. which will give you a valuable opportunity to apply your knowledge to real-life problems and gain hands-on experience in automotive technology.

Program structure

The structure of our program follows clear educational aims that are modified to automotive program. The Automotive technology Engineering program emphasizes managerial skills while assuring students receive a firm understanding of automotive operations, learn to solve technical problems through analysis—and gain knowledge in computer applications and information management skills. This program completed within five semesters after high diploma in automotive technology department. The coursework for the five semesters is as follows:

Sixth Semester

Mathematics (1), Physics, English language (1), Control system fundamentals, Thermodynamics and Statics.

Seventh Semester

Mathematics (2), English language (2), Quality tools and applications, Computer aided Simulation and modeling, internal combustion engines and Mechanics of Materials.

Eighth Semester

Statistics and Probability, Applied fluid mechanics, Advanced engine management and emission control, Mechanical noise and vibration, and Applied Computer aided Vehicle design (Solidworks).

Ninth Semester

Engineering economy, Engineering project management, Elective course (1), Advanced chassis and body control, Vehicle part design and Fluid power.

Tenth Semester

Vehicles dynamics, Elective course (2), Senior project, Automotive workshop management, Alternative fuel technologies; hybrid and electrical vehicles.

The Theoretical and Practical Tests and Graduation Projects Determine Learning Outcomes and Trainee Levels for each program.

The training courses contain a theoretical part and a practical part. The practical part is tested as a practical test and the theoretical part is a theoretical test with different evaluation methods

The Bachelor Degree Graduate gets the seventh level in the Saudi Arabian Qualifications Framework (SAQF).

Admission Requirements: The applicant must have a diploma in Automotive Mechanics.

Brief Description

Course Name	Mathematics (1)	Course Code	MATH 301	Credit Hours	3
Description	An automotive technology mathe extend A-Level mathematics ma to support automotive technolog	terial and in		•	

Course Name		Physics	Course Code	PHYS 301	Credit Hours	3
Descript	ion	The main objective of this course fundamental principles and proceed concepts of motion, forces, energy technology major.	esses of the	physical world. Top	pics include	basic

Course Name		English language (1)	Course Code	ENGL 301	Credit Hours	3
		English 1 is for intermediate level reading, writing, listening and granalysis, thought-provoking disc	ammar, whi	ch develops skills i	•	

Course Name		Thermodynamics	Course Code	MMEV 341	Credit Hours	3
Descript	ion	The main objective of this course thermodynamics by providing th through the study of the relations fluids. This relationship is demon thermodynamics to automotive p	e student wi ship betweer nstrated by a	th the fundamental h heat, work and pro	s of thermod operties of w	vorking

Course Name	Statics	Course Code	MMEV 443	Credit Hours	3
Description	The course covers the following statics of particles: forces in plan moment of a couple, equivalent s dimensions, equilibrium in three of gravity, analysis of structures: beams and cables, friction, moment masses, method of virtual work.	e, forces in systems of fo dimensions trusses, fran	orces on rigid bodie, distributed forces: mes and machines,	es, equilibriu centroids ar internal forc	m in two nd center ees in

Course Name	C	Control system fundamentals		MMEV 352	Credit Hours	3
Descript	ion	The main objective of this course fundamentals of control system to analysis and design of control systems of a variety of control systems complications.	o introduce stems which	the techniques that is to be used to ex	are used in tamine the be	

Course Name		Mathematics (2)	Course Code	MATH 302	Credit Hours	3
Descript	ion	An automotive technology mather extend A-Level mathematics may to support automotive technology	terial and in	_	•	

Course Name	English language (2)	Course Code	ENGL 302	Credit Hours	3
Description	English 2is for high intermediate improve reading, writing, listeni Language analysis, thought-prov	ng and gram	mar, which develop	ps skills incl	

Course Name	Q	uality tools and Applications	Course Code	GNRL 404	Credit Hours	3
Descript	ion	This course provides the students services. Developing a Winning and Keeping Them. The Meaning History of Quality Control and Ir Control and Improvement.	Customer Sog of Quality	ervice Strategy. Acc and Quality Impro	quiring Cust vement. Brid	omers ef

Course Name	I	nternal combustion engine	Course Code	MMEV 322	Credit Hours	3
Descri	ption	The main objective of thi engine performance through ider different classifications of IC engand mechanical constrains gover concerning future IC engine tech	ntifying the ogines. Under ning design.	distinct operating classiand and predict the Explain the environ	haracteristics he thermody	s of namic

Course	Co	mputer Aided Simulation and	Course	MMEV 313	Credit	2
Name	Name Modeling		Code	IVIIVIL V 313	Hours	2
Descripti	on	The main objective of this course MATLAB technical computing of data analysis, visualization, m the course, with an emphasis on	environment odeling, and	for automotive engly for for automotive engly en	gineers. The explored thr	Subjects oughout

Course Name		Mechanics of Materials	Course Code	MMEV 342	Credit Hours	3
Descript	ion	The objective of the course is to properties of a material, and their physical systems in static equilib objects.	r application	s through the analy	sis of forces	on

Course Name		Statistics and Probability	Course Code	STAT 303	Credit Hours	3
Descript	ion	This course is designed for stude include: probability, random vari distributions, statistical process c	ables, discre	ete and continuous	probability	Topics

Course Name		Applied fluid mechanics	Course Code	MMEV 314	Credit Hours	3
Descript	ion	This course introduces the studer including important fluid propert rest and in motion, fluid kinemat deals with advantages of using detest data and for planning expering pipe flow, flow measurement and turbomachines.	ies, regimes ics, and met imensional a nents. The c	of flow, pressure values of flow descriptionally and simility course also covers,	variations in iption and an ude for organ applications	fluids at nalysis. It nizing such as

Course Name	Adv	anced engine management and emission control	Course Code	MMEV 322	Credit Hours	4
Descript	ion	This course provides students with and the engine electronic control ignition and fuel delivery. Which monitor the engine speed, load are ignition spark at the right time for the engine in the exact quantity re-	in order to implement at temperation the prevail	manage all engine s s The ECU (Electro ure while at the san	systems, foci onic control ne time prov	using on unit) to riding the

Course Name	Au	tomotive noise and vibration	Course Code	MMEV412	Credit Hours	3
Descripti	on	The main objective of this course vehicles and the application of no quality automotive vehicles. Student structure and the physical mechanisms	oise and vib	ration control princ velop an understand	iples to the	design of

Course	App	olied Computer Aided Vehicle	Course	MMEV 413	Credit	2
Name		Design (Solidworks)	Code	10110112 0 413	Hours	<i>_</i>
Descript	ion	This course provides automotive employing the solidworks comm dimensioned mechanical drawing addition there is engineering sim mechanical analysis to create pro-	ercial softw gs, assembly ulation emp	are for creating soli	id models, ype (3D prin ment analysi	nting) in

Course Name		Engineering economy		GNRL 405	Credit Hours	2
Descript	ion	This course covers the basics of of The concepts and techniques requires investment opportunities on an ecorresponding Excel spreadsheet engineering economy, nominal a factors, present worth analysis, a benefit/cost analysis and public sand depreciation methods.	uired to faci conomic bas functions. I nd effective nnual worth	litate the evaluation sis are presented, al l'opics include: fou interest rates, engi- analysis, rate of re	n and compa ong with the ndations of neering ecor turn analysis	rison of

Course Name	Eng	gineering project management	Course Code	GNRL 437	Credit Hours	3
Descript	ion	Engineering project management deliver a project to a specified tir consider the principles of the ma- life-cycle of the project, the parti- contract management.	nescale, bud nagement of	lget and quality. The engineering project	nis course wi cts with resp	ill ect to the

Course	A	Advanced Chassis and Body	Course	MMEV 462	Credit	4
Name		Control	Code	WINIE V 402	Hours	7
Descrip	tion	This course provides students the industry standards applying Com and couplings, brakes, clutches, las automotive parts.	puter mode	ling, commonly use	ed to design	of shafts

Course Name		Vehicle Part Design	Course Code	MMEV 434	Credit Hours	2
Descripti	on	This course provides students the industry standards applying Com and couplings, brakes, clutches, las automotive parts.	puter mode	ling, commonly use	ed to design	of shafts

Course Name	Fluid Power	Course Code	MMEV 443	Credit Hours	3
Description	This course provides the student function, processes, and applicat This is achieved by analyzing the components. Also included in the the principle circuit in the lab.	ions of the he performan	nydraulic and pneunce of hydraulic and	natic comport pneumatic	nents.

Course Name		Vehicles Dynamics	Course Code	MMEV 442	Credit Hours	3
Descript	ion	The main objectives of this cours vehicle suspension and predict ve performance. In this course the p design are explained.	ehicle ride b	ehavior and steady	state handli	ng

Course Name		Graduation Project	Course Code	MMEV 491	Credit Hours	4
Descript	ion	The students are required to use on a multidisciplinary team to dedesired needs within realistic confollowed including the selection problem formulation (objectives, design alternatives and work plan	esign a systenstraints. A sof a client do, constraints	m, component, or p standard engineerin efined problem, lite	process to me ag design pro erature revie	eet ocess is w,

Course Name		Automotive Workshop Management		MMEV 483	Credit Hours	2
Descript	ion	This course is designed to provide planning, organizational structure controlling which will be needed expenditures of the workshops and workshops and maintenance school discussed.	e, workshop in Automor nd the proce	layout design, schotive Workshops. Cass of supplying spa	eduling and alculating co re parts to th	

Course		Iternative Fuel Technologies	Course	MMEV 431	Credit	3		
Name	,Ну	ybrid and Electrical Vehicles	Code	WINIE V 431	Hours			
Description		This course is designed to provid principles description of hybrid v a revolution in Automotive techn introduces current trends in altern overview of current alternative for operation of different types of hy Cell Vehicles, Hydrogen-ICE vehicles	le students vehicles and sology sectonative fueled vehicles brid vehicles	electric vehicles, was In addition to that develocles. The courses in production. The will be covered, but the covered, but the covered, but the covered of the covered of the covered of the covered.	he theory anyhich are preat, the course rse includes he theory of pattery types	esently as e, an		

Course Name	Rene	ewable energies	Course Code	MMEV461	Credit Hours	2
Descript	ion	The main objectives of this cours different types of renewable ener fuel cells, and biomass. In order	gy systems,	including solar end	ergy, hydrop	ower,

Course Name		ting, ventilation and air litioning	Course Code	MMEV 472	Credit Hours	2
Descript	ion	This course provides the student Refrigerants and their characteris Introduction to absorption refrige Human comfort, Heat gain-throu calculations, Duct design and air	stics, Basic veration, Psyc gh walls and	vapor compression chometrics and psyc d fenestrations, Coo	equipment, chometric pr	·

Course Name	anced topics in automotive	Course Code	MMEV 482	Credit Hours	2
Descript	This course deals with analysis of industry and how technology charmanager's decisions, and society to emerging technology. To pronourse projects, study of engineer be integrated when appropriate.	of the techno anges may a as a whole.	ffect the future tech How business and anding of the cours	e automotive nnician job d society will se content,	uties, adapt

Course		oocharging and engine	Course	MMEV 473	Credit	2	
Name	boos	8	Code		Hours		
		This course provides the student	This course provides the student with a comprehensive presentation of the principles				
		of turbochargers, engine-turboch	of turbochargers, engine-turbocharger matching, and the performance of				
		turbocharged engine systems. It gives an in-depth insight into turbocharger design,					
Descript	ion	methods for ensuring correct mat	tching of co	mpressor and turbin	ne with the I	CE,	
		advanced turbocharger system concepts like variable geometry turbocharger and				and	
		compounding are covered. This course deals also with other engine boosting					
techniques as superchargers.							

Study Plan

		Sixth Semes	ster					
No.	Course	Course Name	Pre.Req		No.	of U	nits	
110.	Code	Course Name	1 re.Req	CRH	L	P	T	СТН
1	MATH 301	Mathematics (1)		3	2	2	0	4
2	PHYS 301	Physics		3	2	2	0	4
3	ENGL 301	English Language (1)		3	3	0	1	4
4	MMEV 341	Thermodynamics		3	2	2	0	4
5	MMEV441	Statics		3	3	0	1	4
6	MMEV 352	Control system fundamentals		3	2	2	0	4
Total 18 14 8							2	24
CRH:	Credit HoursL:Lectur	re P:Practical T:Tutorial	CTH:Contact Hours					

		Seventh Seme	ster							
No.	Course	Course Name	Pre.Req		No.	of U	nits			
110.	Code	Course wante	11e.Keq	CRH	L	P	T	СТН		
1	MATH 302	Mathematics (2)	MATH301	3	2	2	0	4		
2	ENGL302	English Language (2)	ENGL301	3	3	0	1	4		
3	GNRL 404	Quality tools and Applications		3	3	0	0	3		
4	MMEV 322	Internal combustion engines	MMEV 341	3	2	2	0	4		
5	MMEV 313	Computer Aided Simulation and Modeling		2	0	4	0	4		
6	MMEV 342	Mechanics of Materials		3	2	2	1	5		
	Total 17 12 10 2 24									
CRH:	CRH:Credit HoursL:Lecture P:Practical T:Tutorial CTH:Contact Hours									

	Eighth Semester									
No.	Course	Course Name	Pre. Req	No. of Units						
110.	Code	Course Manie	11c. Req	CRH	L	P	Т	СТН		
1	STAT 303	Statistics and Probability		3	3	0	1	4		
2	MMEV 314	Applied fluid mechanics		3	2	2	1	5		
3	MMEV 332	Advanced engine management and emission control	MMEV 352	4	2	4	0	6		
4	MMEV 412	Automotive noise and vibration	MMEV 342	3	2	2	0	4		

Mechanical Engineering Automotive mechanics

5	MMEV 413	Applied Computer ai (Solidw			2	0	4	0	4
		Total			15	9	12	2	23
CRH:	Credit HoursL:Lect	ure P:Practical	T:Tutorial	CTH:Contact Hours					

		Ninth Semes	ter							
No.	Course	Course Name	Pre. Req		No.	of U	J nits			
110.	Code	Course Manie	11e. Keq	CRH	L	P	T	СТН		
1	GNRL405	Engineering Economy		2	2	0	0	2		
2	GNRL 402	Engineering project management		3	3	0	0	3		
3	MMEV ***	Elective course (1)		2	2	0	0	2		
4	MMEV 462	Advanced chassis and body control systems		4	2	4	0	6		
5	MMEV 434	Vehicle part design	MMEV 342	2	2	0	3	5		
6	MMEV 443	Fluid power	MMEV 314	3	2	2	0	4		
		16	13	6	3	22				
CRH:	CRH:Credit HoursL:Lecture P:Practical T:Tutorial CTH:Contact Hours									

	Tenth Semester											
No.	Course		Course Name		Pre. Req	No. of Units						
110.	Code	`	Course Main	C	Tre. Req	CRH	L	P	T	СТН		
1	MMEV 491	V 491 Graduation Project				4	2	4	0	6		
2	2 MMEV *** Elective course (2)				2	2	0	0	2			
3	MMEV 442		Vehicles dynamics			3	2	2	2	6		
4	MMEV 483	Automo	tive workshop man	agement		2	2	0	0	2		
MMEV 431 Alterative fuel technologies ,Hybrid and electrical vehicles				3	2	2	0	4				
	Total					14	10	8	2	20		
CRH:	CRH:Credit Hours L:Lecture P:Practical T:Tutorial				CTH:Conta	ct Hours				·		

Total Number of Semesters Credit Units		L	Р	т	стн		
Total Number of Semesters Credit Offics	80	58	44	11	113		
Total of training Hours 16 * 114	1808						

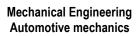
Elective Courses

	Elective Course 1										
No.	Course	Course Name	Course Name Pro was			No. of Units					
110.	Code	Course Name	Pre. req	CRH	L	P	T	CTH			
1	MMEV 461	Renewable energies		2	2	0	0	2			
2	MMEV 472		2	2	0	0	2				
CRH:	CRH:Credit HoursL:Lecture P:Practical T:Tutorial CTH:Contact Hours										

Elective Course 2										
No.	Course	Course Name	Pre. req	No. of Units						
110.	Code	Course wante	11c. req	CRH	L	P	T	CTH		
1	MMEV 482	Advanced topics in automotive technology		2	2	0	0	2		
2	MMEV 473		2	2	0	0	2			
CRH:	Credit HoursL:Lect	ture P:Practical T:Tutorial	CTH:Contact Hours	•						

Department	Gen	eral Stud	dy	Major	Automotive engineering technology					ng	
Course Name	F	Physics		Course Code	PHYS 301						
D				Credit Hours	3 CTH L 2 P 2				4		
Prerequisites				CRH				2	T	0	
CRH: C	T: Tutorial	CTH: 0	Conta	ct Ho	urs						

The main objective of this course is to provide a conceptually-based exposure to the fundamental principles and processes of the physical world. Topics include basic concepts of motion, forces, energy, heat, and fluid which support automotive technology major.


Topics:

- Motion in one dimension.
- Motion in one dimension
- The laws of motion

Experiments: If applicable it will support the theoretical topics.

References: College physics by Serway and Faughn.

		Detailed of Theoretical Contents					
No.		Contents	Hours				
1	building b	on: trigonometry and vectors standard of length, mass and time. The blocks of matter. Dimensional analysis. Uncertainty in measurement and t figures. Unit conversion for physical quantities. estimates and order-tude calculations coordinate systems. Trigonometry review.	4				
2	1	one dimension: displacement, velocity, and acceleration. Motion One-dimensional motion with constant acceleration. Freely falling	5				
3	two dimensions. Two dimensional motion relative velocity. Newton's laws of motion.						
4		The laws of motion: the normal and kinetic friction forces. Static friction forces. Tension forces. Applications of Newton's laws. Two body problems.					
5	potential	energy: work. Kinetic energy and work-energy theorem. Gravitational energy. Gravity and nonconservative forces. Spring potential energy. and energy conservation. Power. Work done by a varying force.	6				
6	1	m and collisions: momentum and impulse. Conservation of momentum. s in one dimension. Glancing collisions. Rocket propulsion.	6				
7	7 Circular motion and the law of gravity: Angular Velocity and Angular Acceleration. Rotational Motion Under Constant Angular Acceleration. Tangential Velocity, Tangential Acceleration and Centripetal Acceleration. Newton's Second Law for Uniform Circular Motion. Newtonian Graviton.						
Te	extbook	College physics by Serway and Faughn.					

	Detailed of Practical Contents						
No.		Hours					
1	Solve a	olve a problem and exercise for each topic.					
2	Basic ex	14					
Textbook		Lab Experiments user manual					

	Department	Mechanical Engineering	Major	Automotive Mechanics					
	Course Name	Thermodynamics	Course Code		MMEV 341				
	D : 14		Credit Hours		3		СТН		4
	Prerequisites		CRH	L	2	P	2	T	0
Ī	CRH: C	redit Hours L: Lecture P: Practical	⊺: Tutorial	CTH: Contact Hours					

The main objective of this course is to understand the basic concepts of thermodynamics by providing the student with the fundamentals of thermodynamics through the study of the relationship between heat, work and properties of working fluids. This relationship is demonstrated by applying the first and second laws of thermodynamics to automotive problems.

Topics:

- learn about thermodynamic systems and boundaries
- study the basic laws of thermodynamics including:

1-conservation of mass

- 2- conservation of energy or first law
- 3- second law
 - understand various forms of energy including heat transfer and work
 - identify various type of properties (e.g., extensive and intensive properties)
 - use tables, equations, and charts, in evaluation of thermodynamic properties
 - apply conservation of mass, first law, and second law in thermodynamic analysis of systems
 - Understanding the basic mechanisms of heat transfer, which are conduction, convection, and radiation

Experiments: If applicable it will support the theoretical topics

References: Thermodynamics: An Engineering Approach. Yunus Cengel / Michael Boles

ISBN10/13:0077986695/0-07-798669-5

	Detailed of Theoretical Contents					
No.	Contents	Hours				
1	Thermodynamic systems, Property, state, process, and equilibrium, system of units	2				
2	Energy and the first law of thermodynamics, Energy of a system	2				
3	3 Energy transfer by work of heat, Energy balance for systems and cycles					
4	Properties of pure, simple compressible substance, Tables of thermodynamic properties	2				
5	Generalized compressibility chart and ideal gas Model	2				
6	Conservation of mass and energy for a control Volume	2				
7	Irreversible and reversible processes	2				
8	Ideal performance for power, refrigeration, & heat pump cycles	4				
9	Second law of thermodynamics and definition of entropy change	2				
10	Control volume analyses for steady state and transient processes	2				

		Detailed of Theoretical Contents					
No.		Contents	Hours				
11	Isentropio	e efficiencies of turbines, nozzles, compressors, and pumps	2				
12	Heat Transfer rate By conduction: Fourier's law of heat conduction.						
13	Heat Transfer by Convection : Newton's law of cooling						
14	The Stefan–Boltzmann law of radiation.						
Те	extbook	Thermodynamics: An Engineering Approach. Yunus Cengel / Michael ISBN10/13: 0077986695 / 0-07-798669-5	Boles				

	Detailed of Practical Contents										
No.		Contents	Hours								
1	1	stration of the basic principles of free and forced convection, stration of heat transfer at fins.	4								
2	Determi	nation of the coefficients of heat transfer,	4								
3	Determi	nation of thermal conductivity	4								
4		ature and flow rate measurement, Familiarization with the various s, their areas of application and special features	4								
5	Calibrat	2									
6	Tempera	ature distribution in the heat exchanger	2								
7	Calibrat	ing electronic temperature sensors,	2								
8	1	rization with different pressure measurement methods, Function of a tube manometer	4								
9	9 Pressure measurements with U-tube and Bourdon tube manometers, Calibration of mechanical manometers										
10	Determi	ning air humidity with a psychomotor	2								
Tex	tbook	Lab Experiments user manual									

	Department	Mecha	anical Engin	eering	Major	A	Automotive Mechanics						
	Course Name		Statics		Course Code	MMEV 443							
	D ::4				Credit Hours	3			стн		4		
	Prerequisites				CRH	L	3	P	0	T	1		
Ì	CRH: C	redit Hours	L: Lecture	P: Practical	T: Tutorial	CTH: (Conta	ct Ho	urs				

The course covers the following topics; statics of particles: forces in plane, forces in space, equilibrium, moment of a force, moment of a couple, equivalent systems of forces on rigid bodies, equilibrium in two dimensions, equilibrium in three dimensions, distributed forces: centroids and center of gravity, analysis of structures: trusses, frames and machines, internal forces in beams and cables, friction, moments of inertia of areas, moments of inertia of masses, method of virtual work.

Topics:

- Force and moment vectors, vector algebra
- Equilibrium of particles and rigid bodies in plane and 3D space
- Support types and reactions
- Equilibrium of structures and internal forces in trusses, and frames
- Distributed loads
- Moment of inertia
- Virtual work concept.

Experiments: If applicable it will support the theoretical topics

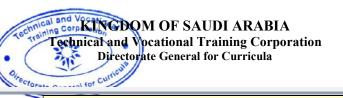
References: Engineering Mechanics-Statics, Hibbeler, R.C.13th Edition, Pearson Prentice Hall, 2015, ISBN-

13: 978-0133918922

	Detailed of Theoretical Contents								
No.		Contents	Hours						
1	General pr	inciples: basic quantities, units and measurements, newton's law	2						
2	Vectors: position vectors, force vectors, vectors operations								
3	3 Equilibrium of a Particle, coplanar forces, three dimensions force systems								
4	Force System Resultants: moment of force, principle of moment, moment about axis, moment of a couple, force couple system simplification, distributed forces.								
5	Equilibrium of a Rigid Body, equilibrium in two dimensions, equilibrium in three dimensions, constrains and static determinacy.								
6	Structural Analysis: simple trusses, zero force member, method of section, space trusses								
7	Internal Forces: shear and moment equation and diagram, relation between distributed load, shear and moment								
8	Friction: th	neory of friction, dry friction, rolling resistance	6						
9	Center of C	Gravity, center of mass, centroid	4						
10	Moments of inertia	of Inertia of area, parallel axis theorem, product of inertia, mass moment of	4						
11	Work of fo	orce, work of a couple moment, virtual Work, potential energy	4						
Те	extbook	Engineering Mechanics-Statics, Hibbeler, R.C.13th Edition, Pearson Pre 2015, ISBN-13: 978-0133918922	entice Hall,						

Department	Mechanical Engin	eering	Major	P	Automotive Mec				
Course Name	Internal combustion	n engines	Course Code		MMEV 322				
D	NO. 675. V. A. 4		Credit Hours	3 стн				4	
Prerequisites	MMEV341		CRH	L	2	P	2	T	0
CRH: C	redit Hours L: Lecture	T: Tutorial	CTH: C	Conta	ct Ho	urs		•	

The main objective of this course is discuss the parameters that define IC engine performance through identifying the distinct operating characteristics of different classifications of IC engines. Understand and predict the thermodynamic and mechanical constrains governing design. Explain the environmental issues concerning future IC engine technology and market trends.


Topics:

- Recognize the basic types of internal combustion engines.
- Estimate the performance of internal combustion engines
- Know the fundamental thermochemistry as applied to fuels.
- Follow the various operational processes from intake to exhaust
- Analyze the combustion phenomena in SI and CI engines
- Analyze and calculate the emissions for SI and CI engines

Experiments: If applicable it will support the theoretical topics

References: Heywood, John B. Internal combustion engine fundamentals. (McGraw-Hill series in mechanical engineering) Bibliography: p. Includes index. I. Internal combustion engines. I. Title. 11. Series. TJ755.H45 1988 621.43 87-15251

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Engine Types and Their Operation Introduction and Historical Perspective ,Engine Classifications, Engine Operating Cycles, Engine Components, Spark-Ignition Engine Operation Examples of Spark-Ignition, Engines Compression-Ignition, Engine Operation Examples of Diesel, Engines Stratified-Charge Engines.	2
2	Engine Design and Operating Parameters Brake Torque and Power Indicated Work Per Cycle Mechanical Efficiency Road-Load Power Mean Effective Pressure Specific Fuel Consumption and Efficiency Air/Fuel and Fuel/Air Ratios Volumetric Efficiency Engine Specific Weight and Specific Volume Correction Factors for Power and Volumetric Efficiency	2
3	Thermochemistry of Fuel –Air Mixtures Characterization of Flames Ideal Gas Model Composition of Air and Fuels Combustion Stoichiometry, The First Law of Thermodynamics and Combustion	2
4	Ideal Models of Engines Cycles Ideal Models of Engine Processes Thermodynamic Relations for Engine Processes Cycle Analysis with Ideal Gas Working Fluid, Comparison with Real Engine Cycles	2
5	Charge Motion With The Cylinder Intake Jet Flow Mean Velocity and Turbulence Characteristics, Definitions, Application to Engine Velocity Data Swirl Swirl Measurement, Swirl Generation during Induction, Swirl Modification within the Cylinder Squish Prechamber Engine Flows Crevice Flows and Blowby Flows Generated by Piston-Cylinder Wall Interaction	4
6	Combustion In Spark- Ignition Engines: Essential Features of Process, Thermodynamic Analysis of SI Engine Combustion, Flame Structure and Speed, Cyclic Variations in Combustion, Partial Burning, and Misfire, Spark Ignition, Abnormal Combustion: Knock and Surface Ignition	4

	Detailed of Theoretical Contents					
No.	Contents	Hours				
7	Combustion In Compression – Ignition Engines: Essential Features of Process, Types of Diesel Combustion Systems, Phenomenological Model of Compression-Ignition Engine, Analysis of Cylinder Pressure Data, Fuel Spray Behavior, Ignition Delay, Mixing-Controlled Combustion					
8	Engines Friction and Lubrication: Friction Fundamentals, Measurement Methods, Engine Friction Data, Engine Friction Components, Accessory Power Requirements, Lubrication					
9	Engine Operating Characteristics: Engine Performance Parameters, Indicated and Brake Power and MEP, Operating Variables That Affect SI Engine Performance, Efficiency, and Emissions, I Engine Combustion Chamber Design, Variables That Affect CI Engine Performance, Efficiency, and Emissions, Supercharged and Turbocharged Engine Performance.					
10	Pollutant Formation and Control: Nature and Extent of Problem, Nitrogen Oxides, Carbon Monoxide, Unburned Hydrocarbon Emission, Particulate Emissions, Exhaust Gas Treatment					
Те	Heywood, John B. Internal combustion engine fundamentals. (McGraw mechanical engineering) Bibliography: p. Includes index. I. Internal con engines. I. Title. 11. Series. TJ755.H45 1988 621.43 87-15251					

		Detailed of Practical Contents			
No.		Contents	Hours		
1	Compa	rison between diesel and petrol cycles	4		
2		of engine performance characteristics for diesel and petrol engine, P-v and P-θ diagram of a single cylinder engine	4		
3	Determination of specific fuel consumption				
4	Determination of indicated and brake thermal efficiency				
5	Determination of mechanical and volumetric efficiency				
6	Determination of indicated and brake power of the engine				
7	Determ	ination of IMEP and BMEP	2		
8	Determ	ination of friction loss (in passive mode)	4		
9		ects of compression ratio, ignition timing and mixture composition on output, fuel consumption, efficiency and exhaust gas composition	2		
10	Analysi	s of the combustion operation in the engine	4		
11	Plotting	and drawing the valve timing diagrams of a four stroke SI and CI engine	2		
Textbook		Lab Experiments user manual			

Department	Mechanical Engineering	Major	Automotive Mechan					cs
Course Name	Control System Fundamentals	Course Code		MMEV 352				
		Credit Hours		3		СТН		4
Prerequisites		CRH	L	2	P	2	T	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

The main objective of this course is to allow the students to understand the fundamentals of control system to introduce the techniques that are used in the analysis and design of control systems, which is to be used to examine the behavior of a variety of control systems commonly used in automotive engineering applications.

Topics:

- Fundamentals Industrial Process Control
- Basic Controllers Modes
- Transducers

Experiments: If applicable, it will support the theoretical topics.

References: Feedback systems: an introduction for scientists and engineers / Karl Johan Storm and Richard M. Murray p. cm. Includes bibliographical references and index. ISBN-13: 978-0-691-13576-2 (alk. paper).

	Detailed of Theoretical Contents					
No.	Contents	Hours				
1	Fundamentals Industrial Process Control: Purpose of Automatic Control, Types Of Process control, Open-loop and closed loop control, closed loop control technology, Characteristics of Process Control Systems, What is a system?, Basic terminology, dynamic response of a controlled system	12				
2	Basic Controllers Modes: Control response, Time response of a controller, Technical details of controllers, Mode of operation of various controller types, On- Of Control, The proportional control, The integral-action control, The PI control, The PD control, Controllers, Electric controller, Synchros andservos, Pneumatic controllers, Final control Element					
3						
Те	Textbook Feedback systems: an introduction for scientists and engineers / Karl Joha and Richard M. Murray p. cm. Includes bibliographical references and includes 13: 978-0-691-13576-2 (alk. paper)					

		Detailed of Practical Contents					
No.	No. Contents						
1	Calibra	tion of all sensors included in the lab Equipment	2				
2	2 Hand on of all the actuators involved in the lab Equipment						
3	Temperature Process Control: Temperature control loops Manual, On/Off, P, PI, PD,PID						
4	Level Process Control: Level control loops Manual, On/Off, P, PI, PD,PID						
5	Pressure	4					
6	PH Pro	cess Control: PH control loops Manual, On/Off, P, PI, PD,PID	4				
7	PLC ha	rdware general use and manipulation	4				
8	PLC in	outs and outputs configuration	4				
9	PLC Programming Exercises						
Textbook		Lab Experiments user manual					

	Department	Mechanical Engine	eering	Major	Automotive Mechanics					
	Course Name	Mechanics of Mat	erials	Course Code	MMEV 342					
	D		Credit Hours		3			СТН		5
	Prerequisites			CRH	L	2	P	2	T	1
ĺ	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

The objective of the course is to study the relationship between the structure and properties of a material, and their applications through the analysis of forces on physical systems in static equilibrium and interpretation of the forces supporting objects.

Topics:

Stress and strain

Mechanical properties of materials

Axial load, torsion, bending, shear

Combined loadings

Experiments: If applicable, it will support the theoretical topics.

References: MECHANICSOF MATERIALS, NINTH EDITION, R. C. HIBBELER

		Detailed of Theoretical Contents					
No.	No. Contents						
1	1 Introduction, equilibrium of deformable body, stress, Normal stress, shear stress, design stress						
2	2 Deformation, strain						
3	Tension and Compression Test, Stress-Strain Diagram, Hooke's law, Ductility, malleability, Shear Stress-Strain Diagram, creep, fatigue						
4		Saint-Venant's Principle, Elastic Deformation of an Axially Loaded Member, Principle of Superposition, Stress Concentrations					
5	Torsional	Deformation of a Circular Shaft, Torsion Formula, Angle of Twist	4				
6	Shear and Flexure F	d Moment Diagrams, Bending Deformation of a Straight Member, ormula	6				
7	Shear in S	Straight Members, Shear Formula	4				
8	8 Combined Loadings						
Te	extbook	Mechanics Of Materials, Ninth Edition, R. C. HIBBELER					

	Detailed of Practical Contents							
No.		Contents	Hours					
1	Tensile	test	6					
2	Charpy	test	8					
3	Bendin	g/flexural test	6					
4	Torsion	test	6					
5	Hardne	ss test	6					
Tex	tbook	Lab Experiments user manual	·					

	Department	Mecha	anical Engin	Major	Automotive Mechani					cs	
	Course Name	Computer Aided Simulation and Modeling			Course Code		MMEV 313				
ĺ	D ::4				Credit Hours		2		СТН		4
	Prerequisites				CRH	L	0	P	4	T	0
Ī	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours										

The main objective of this course is to provide a comprehensive introduction to the MATLAB technical computing environment for automotive engineers. The Subjects of data analysis, visualization, modeling, and programming are explored throughout the course, with an emphasis on practical application to automotive engineering. The material in this course will be focused on the MATLAB and Simulink software package including basic programming and modeling.

Topics:

- MATLAB User Interface and Basics
- Calculus, Linear Algebra, ODEs
- Graphics and Visualization
- Creating Simulink Models
- Modeling a Dynamic Control System

Experiments: If applicable, it will support the theoretical topics.

References: Beucher, O, and Weeks, M., Introduction to Matlab and Simulink

	Detailed of Practical Contents	
No.	Contents	Hours
1	MATLAB User Interface and Basics: Desktop interface, toolboxes, variables, vectors, matrices, operators, built-in functions, input and output.	6
2	Calculus, Linear Algebra, ODEs: Polynomials, integration, curve fitting, linear systems of equations, convolution, and differential equations.	8
3	Graphics and Visualization: 2D and 3D plotting functions, graphics customizations, property editor, figure and axes handles, animation.	8
4	Basic Programming: Function and script m-files, data types, strings, relational and logical operators, program flow control, debugging.	6
5	Programming Practice: Guide editor, graphical user interface programming, callbacks, MATLAB File Exchange.	6
6	Statistics and Data Analysis: Probability distributions, linear models, regression, confidence intervals, graphical representation, ANOVA.	6
7	Simulink User Interface and Basics: Opening Simulink Library, Opening a model, user interface, demo models.	6
8	Creating Simulink Models: Creating a new model, adding blocks, moving blocks in the model window, connecting blocks, saving model, simulating the model.	6
9	Understanding the Demo model: Running the simulation, modifying simulation parameters, import data from MATLAB workspace, export simulation data to MATLAB workspace.	6

	Detailed of Practical Contents						
No.	. Contents						
10	Debuggin	Modeling Continuous and Discrete Systems: Creating Custom Libraries, Debugging Modeling Linear Continuous-State Systems and Discrete-Time systems. Custom Libraries, Debugging.					
Te	extbook	Beucher, O., and Weeks, M., Introduction to Matlab and Simulink, A P Approach, 3rd edition, Infinity Science Press, 2007.	roject				

Department	Mechanical Engineering	Major	Automotive Mechanics						
Course Name	Applied Fluid Mechanics	Course Code	MMEV 314						
D	,	Credit Hours		3		СТН		5	
Prerequisites		CRH	L	2	P	2	T	1	
CDU: C	CPU: Credit House L. Locture D. Procticel T. Tutorial CTU: Contact House								

This course introduces the students to the fundamental aspects of fluid motions, including important fluid properties, regimes of flow, pressure variations in fluids at rest and in motion, fluid kinematics, and methods of flow description and analysis. It deals with advantages of using dimensional analysis and similitude for organizing test data and for planning experiments. The course also covers, applications such as pipe flow, flow measurement and the fluid mechanics fundamentals associated with turbomachines.

Topics:

- To understand the behavior, properties, and definition of a fluid including density, viscosity, Specific gravity, pressure, shear stress, and fluid forces.
- To be able to define the different types of fluid flow (laminar, turbulent and transition).
- To be able to describe and distinguish between pressurized and free surface flow.
- To become familiar with the use of various measurement devices for the determination of fluid velocity.
- To understand the derivation of the energy equation (Bernoulli equation) and its application to pressurized flow and open channel flow systems. To be able to solve for losses in energy head due to friction and minor losses

Experiments: If applicable, it will support the theoretical topics.

References: Applied Fluid Mechanics, 6/E. Robert L. Mot. ISBN10/13: 0131146807/9780131146808

	-	Detailed of Theoretical Contents		
No.		Contents	Hours	
1	Fluid Properties and	d Hydrostatics.	4	
2	Static Pressure Force	ees.	4	
3	Fluid Dynamics & l	Bernoulli Equation.	4	
4	Flow Measurement.			
5	Forces and Moment	tum of Moving Fluids.	4	
6	Viscous Pipe Flows	5.	4	
7	Pumps and Turbine	S.	4	
8	Flow Over Immerse	ed Bodies.	4	
Te	Applied 9780131	Fluid Mechanics, 6/E. Robert L. Mot. ISBN10/13 : 01311 146808	46807 /	

		Detailed of Practical Contents						
No.		Contents	Hours					
1	1	ement of the pressure loss for laminar and turbulent flow Determination ritical Reynolds' number.	2					
2		ements using a tube manometer. Measurement of the static and dynamic ecomponent in a fluid.	4					
3		Experiments on the Boyle-Marriotte law. Determination of the buoyancy of arious bodies.						
4	Investig	Investigations on the density of liquids. Demonstration of capillary effects.						
5	Demons	Demonstration Pascal's law. Determination of the center of pressure.						
6	Demons venturi	4						
7	1	ination of the flow rate factor. Effect of bodies of different shape on the ffect of sources and sinks. Comparison of different flow rate measuring.	4					
8		te measurement with nozzle/orifice, venture flow meter. Depiction of , transition and turbulent flow.	2					
9		y profile in a pipe flow. Demonstration that the flow velocity is ional to the pressure difference between the total pressure and the static e.	2					
10	resistan	ination of drag coefficients of various objects. Measurement of lift and ce on various wing sections. Examination of aerodynamic lifting aids slats or flaps.	2					
Textbook 1		Lab Experiments user manual						

	Department	Mech	anical Engine	eering	Major	Automotive Mechanics					
	Course Name		d Engine Mar Emission Co	_	Course Code	MMEV 322					
	n ::	NO (TX 252		Credit Hours	4			СТН		6	
	Prerequisites		MMEV 352		CRH	L	2	P	4	T	0
Ī	CRH: C	CRH: Credit Hours L: Lecture P: Practical				CTH: Contact Hours					
	CRH: C	redit Hours	edit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

This course focuses on the advanced engine management systems in the modern automobile. An emphasis will be made on the emission control.

The student will be able to test and diagnose engine control systems of various manufactures.

Topics:

- Fundamentals of automotive electronics
- Engine control systems
- Multiplexing
- Emissions standards, measurement and control
- Engine and emission control system diagnostic

Experiments: If applicable, it will support the theoretical topics.

References: Automotive mechatronics, (Bosh2015)

Halderman, J. & Linder, J. (2012). Automotive Fuel and Emissions Control Systems (3rd Edition)

Upper Saddle River, NJ: Pearson Education. [ISBN 13:978-0-13-254292-0]

	Detailed of Theoretical Contents						
No.	Contents	Hours					
1	Electronic control unit: Design, data processing, digital modules in the control unit, control unit software.	4					
2	Automotive networking: cross system function, requirement for bus systems, classification of bus systems, CAN bus, LIN bus, MOST bus, other bus systems (Bluetooth, TTP/C, Flexray), diagnostic interface.	10					
3	Engine Control Systems: Electronic control Fuel Injection, ESA (Electronic Spark Advance), ETCS-I (Electronic Throttle Control System-intelligent), Dual VVTi (Variable Valve Timing-intelligent), ACIS (Acoustic Control), Induction System, Fuel Pump Control, Air Injection Control, Starter Control (Cranking Hold Function), Air-fuel Ratio Sensor and Heated Oxygen Sensor Heater Control, Air Conditioning Cut-off Control, Evaporative Emission Control, Engine Immobilizer.	10					
4	Fault diagnostic: On-board diagnosis system, Diagnostic Management software, Data Streams Analysis, Output Data Signals Analysis.	8					
Te	Textbook Automotive mechatronics, (Bosh2015) Halderman, J. & Linder, J. (2012). Automotive Fuel and Emissions Cont (3rd Edition) Upper Saddle River, NJ: Pearson Education. [ISBN 13:978-254292-0] Halderman, J. D. (2011). Diagnosis & Troubleshooting of Automotive El Electronic, & Computer Systems (6th Edition) Upper Saddle River, NJ: Education. [ISBN 13:978-0132551557]						

		Detailed of Practical Contents				
No.						
1	Measur	ing and testing devices.	8			
2	Engine	Ingine control computer: memories, interfaces, power supply.				
3	status, o	Engine control systems inspection and testing: Readiness Test Status, monitor status, component status, monitor result information, Readiness Monitor Status, DTC, Current data, Freeze Frame Data, fail-safe mode.				
4	Reading	g and analysis of all sensors signals.	20			
5	Emissio	Emission tests and analysis.				
Tex	tbook	Lab Experiments user manual				

Department	Mechanical Engineering	Major	Automotive Mechanics					cs	
Course Name	Automotive Noise and Vibration	Course Code	MMEV 412						
Prerequisites	MANESY 2.42			3		СТН		4	
	MMEV 342	Credit Hours CRH	L	2	P	2	T	0	
CDU. C	CDU: Credit House Laborate D. Brestied T. Tatoriel CTU: Contact House								

The main objective of this course is to provide the student with the fundamentals of Mechanical Vibration theory through the study of free and forced systems, damped and Undamped systems, single and multi-degree of freedom. In addition, the course provides the basic concepts of the harmonic excitation and torsional vibration.

Topics:

- Basic concepts of vibration.
- Free Vibration of Single-Degree-of-Freedom Systems.
- Harmonically Excited Vibration.
- Design for vibration suppression.
- Vehicles NVH.

Experiment: If applicable, it will support the theoretical topics.

References: Vehicle Noise, Vibration, and Sound Quality, Gang Sheng.

		Detailed of Theoretical Contents				
No.		Contents	Hours			
1	Introduct	ion to mechanical vibrations.	4			
2	Free unda	imped vibration of Single-Degree-of-Freedom Systems.	4			
3	Free dam	ped vibration of Single-Degree-of-Freedom Systems.	4			
4	Forced V	ibration of Single-Degree-of-Freedom Systems.	4			
5	Harmonio	Harmonic excitation.				
6	Simple Po	Simple Pendulum vibration.				
7	Types of	Noise, Vibration, and Harshness(NVH) in vehicles.	4			
	Steps of t	he NVH systematic diagnostic approach.				
8	Engine vi diagnosin	bration, vehicle speed vibration, all wheels drive systems vibration NVH g tools.	4			
Te	extbook	Fundamentals of Vibrations, Leonard Meirovitch Mechanical Vibrations, Singiresu S. Rao Vehicle Noise, Vibration, and Sound Quality, Gang Sheng. Noise, Vibration, and Harshness. (Volkswagen of America, Inc.Service) Printed in U.S.A.Printed 03/2005, Course Number 861503)	Training			

		Detailed of Practical Contents					
No.		Contents	Hours				
1	Introduc	ction to free, forced, damped and undamped vibration	2				
	Discove	iscovery of the lab equipment.					
2	Spring s	Spring stiffness determination.					
3	Resonar	Resonance frequency with inactive dynamic absorber.					
4	Estimat	Estimation of the damping ratio.					
5	Phase sl	Phase shift determination.					
6	Tuning	Tuning active dynamic absorber.					
7	Resonar	nce frequency with active dynamic absorber.	2				
8	Torsion	al stiffness of a shaft.	2				
9	Modulu	s of rigidity G (fixed/fixed condition) using torque and using oscillations.	2				
10	Length	of a supporting rod.	2				
11	Mass m	oment of inertia.	4				
12	Diamete	Diameter of a supporting rod.					
13	Damped	Damped torsional oscillation.					
Tex	Textbook Lab Experiments user manual						

Department	Mechanical Engineering	Major	A	Automotive Mechanics				
Course Name	Applied Computer aided Vehicle Design (Solidworks)	Course Code		MMEV 413				
D ::4		Credit Hours		2		СТН		4
Prerequisites		CRH	L	0	P	4	Т	0
CRH: C	redit Hours L: Lecture P: Practica	l ⊤: Tutorial	CTH: Contact Hours					

This course deals with how to use the SOLIDWORKS mechanical design automation software to build parametric models of parts and assemblies, and how to make drawings of those parts and assemblies. In addition, this course will provide an in-depth coverage on the basics of Finite Element Analysis (FEA), covering the entire analysis process from meshing to evaluation of results for parts and assemblies.

Topics:

- Sketching and 3D modeling.
- Shelling and ribs.
- Assembly and animation.
- Finite elements analysis.

Experiments: If applicable, it will support the theoretical topics. **References:** Practical user manuals -Solidworks essentials training.

		Detailed of Practical Contents				
No.	No. Contents					
1	Solidworl	ks basics and the user interface.	4			
2	Sketching.					
3	Part mode	eling.	4			
4	Symmetry	y and draft.	6			
5	Patterning	<u>5</u> .	6			
6	Revolved features.					
7	Shelling and ribs.					
8	Repairs.					
9	Design changes.					
10	Configurations.					
11	Global variables and equations.					
12	Drawing Bottom up assembly modeling.					
13	Using assembly. 4					
14	Finite elements analysis using Solidworks (linear stress analysis, heat transfer analysis).					
Те	Textbook Practical user manuals -Solidworks essentials training.					

Department	Mech	nanical Engin	eering	Major	A	Automotive Mechanics				
Course Name	Advan	ced chassis a control	nd body	Course Code		MMEV 462				
D ::4				Credit Hours		4		СТН		6
Prerequisites				CRH	L	2	P	4	Т	0
CRI	: Credit Hours	L: Lecture	P: Practical	T: Tutorial	CTH: (Conta	ct Ho	urs		

This course focuses on the advanced control of chassis and body systems, It includes the control of traction, steering, suspension, stability, drive, adjustment and security systems, This course also provides students with diagnostic procedure and fault analysis related to these systems.

Topics:

Suspension and steering control.

• Vehicle dynamic integrated management.

• Electronic control of drive and adjustment systems, vehicle security systems.

• Fault diagnostic.

Experiments: If applicable, it will support the theoretical topics.

References: Automotive mechatronics, Conrad Reifed.

	De	etailed of Theoretical Contents			
No. Contents					
1	Suspension and steering control: Vehicle Height Control, Damping Force Control, Spring Rate Control, 4-wheel Related Control and VGRS (Variable Gear Ratio Steering control systems).				
2	Vehicle dynamic integrated management: Brake Control System, Multi-terrain ABS (Antilock Brake System), EBD (Electronic Brake force Distribution), Brake Assist, A-TRAC (Active Traction Control), VSC (Vehicle Stability Control), Hill-start Assist Control, CRAWL.				
3	Electronic control of drive and adjustment systems, vehicle security systems, air conditioning system: power window, power sunroof, seat and steering column adjustment, electronic heater, electronic air conditioning, locking and central locking system, biometric system, lighting system, combination meter (multi display), Bluetooth hands-free system, wiper, washer, monitor system, intuitive parking assist system, the smart access system, pre-collision system, The cruise control, power seat system, pressure warning Systems.				
4	Fault diagnostic.		4		
5	Electronic Transmission Control: Shift Timing Control, Clutch Pressure Control, Line Pressure Optimal Control, Engine Torque Control, Flex Lock-up Clutch Control, Lock-up Timing Control, Powertrain Cooperative Control, Coast Downshift Control, AI (Artificial Intelligence)- SHIFT Control, Multi-mode Automatic Transmission, R to D Squat Control, N to D Squat Control, 2nd Start Control, 4WDControl ECU, 4WD control ECU actuates and Fail-safe.		6		
Textbook Automotive mechatronics, Conrad Reifed					

Detailed of Practical Contents						
No.	. Contents					
1	Use of 1	4				
2	suspens	10				
3	Steering	10				
4	Vehicle dynamic integrated management diagnosis and testing. 10					
5	Diagnos vehicle	10				
6	Electron	10				
7	conditioning system Control diagnosis and testing.					
Tex	Textbook Lab Experiments user manual					

Department	Mechanical Engineering	Major	Automotive Mechanics				
Course Name	Vehicle Parts Design	Course Code	MMEV 434				
D ::	MMEV 342	Credit Hours CRH	2		СТН		5
Prerequisites			L	2	P	0	T
CDU, Credit Hours L. Lesture D. Presticel T. Tutorial CTU, Contact Hours							

The course includes an overview of the design process, engineering mechanics, and failure prevention under static and variable loading, shafts, bearings, transmission elements, lubrication, and characteristics of the principal types of mechanical elements.

Topics:

- Introduction to mechanical engineering design: load, stress...
- Failure prevention
- Design of mechanical elements: clutches, brakes, shafts, gears, bearings, flexible elements, belts, ropes and chains.
- Transmission, steering and suspension design

References: Mechanical engineering design, Budynas, Nisbett, tenth edition, ISBN-13: 978-0073398204

	Detailed of Theoretical Contents						
No.		Contents	Hours				
1	Introducti		2				
2	Design ba						
	Factor of	2					
	Stress concentration.						
3	Theories of failure.						
	Failure du	ne to static loading.	4				
	Fatigue failure, dynamic loading.						
4	Shafts design and calculation. 4						
5	Clutch design and calculation.						
6	Brakes design and calculation (disk brake, drum brake).						
7	Transmission, Suspension and steering design. 4						
8	Design and selection of bearings and flexible elements.						
9	Design and selection of belt and chain drives.						
Te	extbook	Mechanical engineering design, Budynas, Nisbett, tenth edition, ISBN-13: 97 Design of Machine Elements by V. B. Bhandari, TMH Mechanical Engineering Design by Shigley and Mischke, TMH Theory and Problems of Machine Design by Hall, Holowenko and Laughlin, Machine Design by T.H. Wentzell, Cenage Learning. Design of Machine Elements by M. F. Spotts, Prentice Hall					

Department	Mechanical Engir	neering	Major	Automotive Mechanics					cs
Course Name	Fluid Powe	r	Course Code	MMEV 443					
ъ	MMEV 314 Credit Hours		3		3 стн			4	
Prerequisites				L	2	P	2	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

This course provides the student with the basic knowledge concerned with the function, processes, and applications of the hydraulic and pneumatic components. The principle of fluid power is the transmission of forces ad motions using a confined, pressurized fluid. This is achieved by analyzing the performance of hydraulic and pneumatic components. Also included in this course is performing the design and constructing the principle circuit in the lab

Topics:

- Basic principles of fluid power.
- Fluid power components.
- Hydraulic circuit analysis.
- Pneumatic circuit analysis.

•

Experiments: If applicable, it will support the theoretical topics.

References: Fluid power system dynamics, William Durfee, Zongxuan Sun and James Van DeVen

		Detailed of Theoretical Contents				
No.		Contents	Hours			
1	Introducti Systems.	on: Overview, Fluid Power Examples and Analyzing Fluid Power	2			
2	_	nciples of fluid power: Pressure and flow, Power and efficiency, and air fluids, and fluid behavior.	4			
3	Basic principles of fluid power: fluid behavior(viscosity, Bulk Modulus, Pascal's law and high forces).					
4	Basic principles of fluid power: Conduit flow and pressure losses in conduits.					
5	Basic principles of fluid power: Orifice flow, bends and fittings.					
6	Fluid pow	ver components cylinders, pumps, motors, and control valves.	4			
7	Fluid pow	ver components: Accumulators, filters, reservoirs, hoses and fitting.	4			
8		circuit analysis: fluid resistance, fluid capacitance, fluid inertance, ns laws and states.	4			
9	Pneumatic circuit analysis: fluid resistance, fluid capacitance, fluid inertance, connections laws and states.					
Textbook Fluid power system dynamics, William Durfee, Zongxuan Sun and Jame Ven.						

	Detailed of Practical Contents						
No.	Contents	Hours					
1	Symbols and Components of Hydraulic Circuits: Analyze and explain the meanings of the symbols of the valves, cylinders, motors, filters and other components.	2					
2	Hydraulic Circuits:	10					
	Understand the functional performance of the hydraulic circuits.						
	• Know the symbols of the hydraulic circuit components.						
	Design and construct and implement the circuits.						
3	Pneumatic Circuits: Control in single acting cylinder, Regulate the speed in single acting cylinder, Control in double acting cylinder, Speed control, Indirect control in single and double acting cylinders, Automatic return to the double acting cylinder using limit valves (switches), Control depending on pressure or without ensuring the final position.						
4	Representing the Circuits Diagrams: The methods of numbering and symbolling of elements in the circuit diagram according to the standards, Writing the sequence of processes using one the following methods(1-Listing with time order, 2-Listing a tabulated form, 3-Direction diagram, 4-Sequence chart, 5-Functional performance chart). Draw the sequence of functions using the following method (1-Motiondiagram, 2-Displacement-step, diagram.3-Displacement-time diagram, 4-Control diagram).	10					
Tex	Lab Experiments user manual.	1					

Department	Mechanical Engineering	Major	Automotive Mechanics					nics			
Course Name	Vehicle Dynamics	Course Code	MN			MMEV 442			MMEV 442		
D		Credit Hours		3		СТН		6			
Prerequisites		CRH	L	2	P	2	Т	2			
CDU. C	CDU Credit House I. Lacture D. Brectical T. Tutorial CTU Contact House										

The main objectives of this course are describe and analyses the operation of a vehicle suspension and predict vehicle ride behavior and steady state handling performance. In this course, the physical principles of road vehicle aerodynamic design are explained.

Topics:

- The fundamental and application of vehicle motion analysis
- vehicle acceleration and braking performance.
- The fundamental of vehicle handling characteristics.
- The vehicle steady state stability conditions.
- The performance index of vehicle suspension and steering system.
- quasi-static rollover.
- Tires.

Experiments: If applicable, it will support the theoretical topics. **References:** Fundamentals of vehicle dynamics by Thomas D. Gillesnie.

	Detailed of Theoretical Contents				
No.	Contents	Hours			
1	Introduction to vehicle dynamics: Fundamental approach to modeling, Dynamic axle loads.	4			
2	vehicle acceleration performance: Power and traction-limited acceleration. vehicle braking performance: Deceleration equation, Braking forces and tire-road friction.				
3	3 vehicle braking performance: Deceleration equation, Braking forces and tire-road friction.				
4	The fundamental of vehicle handling characteristics: Aerodynamics, Drag, side and lift force, rolling resistance and total road loads.				
5	The fundamental of vehicle handling characteristics: Ride excitation sources, vehicle response properties and perception of ride.				
6	The vehicle steady state stability conditions: low-speed turning, high-speed cornering, and suspension effects on cornering	2			
7	Vehicle suspension system: solid axles, independent suspensions, anti-squat and auto-pitch suspension geometry, anti-dive suspension geometry, roll center analysis, and active suspensions.				
8	Vehicle steering system: the steering linkages, steering geometry error, front wheel geometry, steering system forces and moments, steering system models, influence of front-wheel drive and four-wheel steer.				
9	Rollover: quasi-static rollover of a rigid vehicle, quasi-static rollover of a suspended, transient rollover and accident experience.	4			

	Detailed of Theoretical Contents							
No.	No. Contents							
10	Tires: tire construction, size and load rating, terminology and axis system, mechanics of force generation, tractive properties, cornering properties, camber thrust, alignig moment, combined braking and cornering, conicity and ply steer, durablility forces and tire vibrations.							
Textbook		Fundamentals of vehicle dynamics by Thomas D. Gillesnie.						

	Detailed of Practical Contents					
No.		Contents	Hours			
1	Using E	Engine and chassis Dynamometers.	8			
2	Using A	6				
3	Using Universal Transmission Dynamometers.					
4	Using C	Car Sim software.	6			
5	Using S	uspension Sim software.	6			
Textbook		Lab Experiments user manual.				

Department	Mechanical Engin	eering	Major	I	Automotive Mechanics				iics
Course Name	Automotive worl managemen	-	Course Code		MMEV 483				
D			Credit Hours		2		СТН		2
Prerequisites			CRH	L	2	P	0	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

This course is designed to provide students with management skills such as planning, organizational structure, workshop layout design, scheduling and controlling which will be needed in Automotive Workshops. Calculating cost and expenditures of the workshops and the process of supplying spare parts to these workshops and maintenance scheduling of various vehicle's groups will be discussed.

Topics:

- Introduction to feasibility studies for automotive workshops.
- The design concepts of planning, organizational structure of automotive workshops.
- Automotive Workshop Health and Safety.
- Maintenance methods.
- Workshop management software.
- Workshop design and layout project.

Experiments: If applicable, it will support the theoretical topics.

References:

- -Automotive Workshop Design Equipment Installation, ©2011 Alemlube Pty Ltd. REMA TIP TOP GmbH.
- -Business Unit Automotive 85586 Poing/Germany, design, construction and equipment of modern workshop.
- AUTOMOTIVE WORKSHOP SAFETY, Fix the Risks Work Safe.

Detailed of Theoretical Contents						
No. Contents						
1	Introduction to feasibility studies for automotive	6				
	workshops: Feasibility Study process, Feasibility Analysis, Aims and objectives, type of business, Preliminary steps, Finance and Money, case Study					
2	the design concepts of planning, organizational	8				
	Structure of automotive workshops: Vehicle Operations Facilities, Vehicle Maintenance Facilities, Planning and Programming considerations, Vehicle Operations and Vehicle Maintenance Complex, Vehicle Operations Administrative Facility Functions, Vehicle Maintenance Facility Functions, Space Criteria for Vehicle Operations Facilities and Vehicle, Site Evaluation Maintenance Facilities, Site Design, Building Design and systems, Layout planning.					
3	Automotive Workshop Health and Safety: Health and safety requirements and information, Determine the appropriate health and safety practices and equipment, Fire prevention and emergency procedure, Management of outdoor Areas Health and Safety, Disposal of waste systems, Handling and storing	6				
	chemic, Management of indoor areas Health and Safety.					
4	ORGANIZATION STRUCTURE WORKSHOP: Goal of Organization Structure Workshop, Definition of Organization Structure, Organizational Structure,	6				

		Detailed of Theoretical Contents							
	No.		Contents						
	Organizational Elements, Hierarchical Structure, Maintenance Structure, Operations and Procedures.								
	5	Maintena	nce methods: What is maintenance, Management Objectives, Types of nce, Reactive Maintenance, Preventive Maintenance, Predictive nce, Maintenance Procedures and Documentation.	6					
Textbook		xtbook	-Automotive Workshop Design Equipment Installation, ©2011 Alemlu REMA TIP TOP GmbH -Business Unit Automotive 85586 Poing/Germany, design, construction equipment of modern workshop - AUTOMOTIVE WORKSHOP SAFETY, Fix the Risks Work Safe						

	Department	Mechanical Engineering	Major	A	Automotive Mechanics				cs
	Course Name	Alternative Fuel Technologies ,Hybrid and Electrical Vehicles	Course Code		MMEV 431				
ĺ	D		Credit Hours		3		СТН		4
	Prerequisites		CRH	L	2	P	2	T	0
ſ	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

This course is designed to provide students with knowledge of the theory and principles description of hybrid vehicles and electric vehicles, which are presently as a revolution in Automotive technology sectors In addition to that, the course, introduces current trends in alternative fueled vehicles. The course includes an overview of current alternative fueled vehicles in production. The theory of operation of different types of hybrid vehicles will be covered, battery types, Fuel Cell Vehicles, Hydrogen-ICE vehicles, Alternative Fuels and Flex Fuel vehicles.

Topics:

Alternate-Fuels.

Hybrid Electric Vehicle Systems.

Integrated Hybrid systems from many manufactures.

Experiments: If applicable, it will support the theoretical topics.

References: Toyota Hybrid System, Toyota Motor Corporation, Public Affairs Division 4-8 Koraku 1-

chome, Bunkyo-ku, Tokyo, 112-8701 Japan

Hybrid and Alternative Fuel Vehicles, Second Edition, James D. Halderman&

		Detailed of Theoretical Contents					
No.	No. Contents						
1	Alternativ	native Fuel Vehicles: Introduction to the fundamentals, Alternative Fuels, native Fuel Definitions, Alternative Fuel kinds, Fuel Use in Public portation, Pollution Effects, Emissions from Alternative Fuels.					
2	Introduction to Hybrid Vehicles: Hybrid Engine Systems, Hybrid Auxiliary and High-Voltage Batteries, Electric Motors, Generators, and control, Regenerative Braking System, Hybrid Vehicle Transmissions and Transaxles, Hybrid Vehicle Heating and air Conditioning, Honda Hybrid Vehicles.						
3	Toyota/Pi	rius Hybrid Vehicles.	12				
4	Fuel Cells	s and Advanced Technologies Electrical vehicles.	6				
Textbook		Toyota Hybrid System, Toyota Motor Corporation, Public Affairs Division 4-8 Koraku 1-chome, Bunkyo-ku, Tokyo, 112-8701 Japan. Hybrid and Alternative Fuel Vehicles, Second Edition, James D. Halderman & Tony Martin, Prentice Hall, 2011. Hybrid and Alternative Fuel Vehicles (3rd Edition) [Paperback] James D. Halderman.					

		Detailed of Practical Contents					
No.							
1		strate the appropriate use of personal protection equipment compare and the different types of high voltage batteries used in hybrid and electric s.	4				
2	Perform a removal of, and the appropriate tests to, the high voltage battery perform a removal of the Converter/Inverter assembly.						
3	Perform	6					
4		n, scan data analysis and trouble code procedures Manufacturer specific m and information code diagnostics.	6				
5	Motor (Generator diagnostics and loss of isolation (LOI) testing.	6				
6	6 Hybrid vehicle networking, reprogramming and module coding Removal and replacement of HV Battery Packs and inverter assemblies.						
Tex	Textbook Lab Experiments user manual.						

Department	Mechanical Engineering	Major	Automotive Mechan					nics
Course Name	Heating, Ventilation and Air Conditioning	Course Code	MMEV 472					
		Credit Hours		2		СТН		2
Prerequisites		CRH	L	2	P	0	T	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Review of basic thermodynamics, vapor compression cycles, Refrigerants and their characteristics, Basic vapor compression equipment, Introduction to absorption refrigeration, Psychometrics and psychometric processes, Human comfort, Heat gain-through walls and fenestrations, Cooling load calculations, Duct design and air distribution system, Load calculation using software packages, Laboratory work.

Topics:

- Introduction unites and dimensions, fundamental concepts.
- basic principles of thermal engineering.
- Air conditioning systems.
- Moist air properties and conditioning process.
- Refrigeration cycles.
- Components of refrigeration cycles and air conditioning systems.
- Heat transmission in Building structures.
- Solar radiations.
- Space heating and cooling load.

References: Faye C. M. et. Al. Heating Ventilation and Air Conditioning: Analysis and Design, Wiley, ISBN 978-0471470151, 2004.

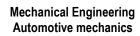
P. G. Down, Heating and cooling load calculations, 2008.

Roger W.H., Design Handbook, MC Graw Hill, 2006.

		Detailed of Theoretical Contents					
No.							
1	Introduction – Unites and dimensions- Fundamental concepts.						
2	Air condi	tioning systems.	2				
3	Moist air	properties and conditioning processes.	2				
4	refrigerati	ion cycle.	4				
5	Indoor air quality .						
6	Heating transmission in building structures.						
7	Solar radiation.						
8	Space hea	nting load.	4				
9	EES and	EXCEL in solving open-ended design problems.	4				
10	Application	ons .	2				
Faye C. M. et. Al. Heating Ventilation and Air Conditioning: Analysis and Design, Wiley, ISBN 978-0471470151, 2004. P. G. Down, Heating and cooling load calculations, 2008 Roger W.H., Design Handbook, MC Graw Hill, 2006.							

Department	Mechanical Engineer	ring	Major	Automotive Mechanic				nics	
Course Name	Renewable Energ	y	Course Code	MMEV 461					
D ::4	• • •		Credit Hours	2			стн		2
Prerequisites			CRH	L	2	P	0	T	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

Review of Heat Transfer, Solar angles, and solar radiation on earth's surface, Solar radiation on tilted surfaces, Radiation measurements, Solar collectors and concentrators, Storage, Photovoltaic, Wind energy, Geothermal energy, Other renewable energy sources.


Topics:

- Review of Heat Transfer.
- Basics of Radiation Heat Transfer.
- Overview of the energy situation.
- Determine energy requirements.
- Effect of government regulation on the renewable energies industry.
- Solar basics and solar thermal power.
- Wind power.
- Hydropower.
- Biomass.
- Photovoltaic and fuel cells.
- State of the industry.

References: Schaeffer, John, The Complete Guide to Renewable Energy Technologies and Sustainable Living (30th Ed.).

Real Goods Solar Living Sourcebook, 2007.

	Detailed of Theoretical Contents						
No.	Contents	Hours					
1	Introduction and basic heat transfer concepts.	2					
2	Introduction to radiation heat transfer applicable to solar systems.	2					
3	Renewable energy; background and overview.	2					
4	Depletion of traditional energy sources e.g. fossil fuels.	2					
5	Solar heating and air conditioning, Solar electric generation.	2					
6	Photovoltaic (PV), PV modules and integrated systems.	2					
7	Solar thermal, Solar farming.	2					
8	Geothermal power, Heat pumps.	4					
9	Wind energy.	2					
10	Hydropower, Ocean generation systems.	2					
11	Fuel cells.	2					
12	Biomass, waste and other resources.	2					

	Detailed of Theoretical Contents						
No.	. Contents						
13	Using renewable energy.						
14	Managing renewable energy. 2						
15	5 Future energy mix: global energy scenarios. 2						
Te	Schaeffer, John, The Complete Guide to Renewable Energy Technologies and Sustainable Living (30th Ed.). Real Goods Solar Living Sourcebook, 2007. Boyle, Godfrey, Bob Everett, and Janet Ramage (eds.). Energy Systems and Sustainability: Power for a Sustainable Future. Oxford University Press, 2004.						

Department	Mechanical Engine	Major	Automotive Mechanics					cs	
Course Name	Turbocharging and boosting	l engine	Course Code	MMEV 473					
D ::/			Credit Hours		2		СТН		2
Prerequisites			CRH	L	2	P	0	T	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

This course provides a technical education in the field of turbochargers and turbocharging for automotive professionals. It will start from the fundamental requirements of turbocharger systems and focuses on automotive application and will look at recent developments.

Topics:

The course structure will include:

- Reasons for turbocharging and supercharging.
- Basic mechanical and aerodynamic design features.
- Turbocharger strip down and benchmarking.
- Design aspects and consideration of turbine, compressor and bearing systems.
- Failure modes and their identification.
- Waste gating, variable geometry and multistage turbocharging.
- Turbo installation.
- Recent developments and the influence of future engine technologies.

References: Fundamentals of Turbocharging, Nicholas C. Baines.

		Detailed of Theoretical Contents					
No.		Contents	Hours				
1	Reasons for turbocharging and supercharging.						
2	Basic me	chanical and aerodynamic design features.	4				
3	Basic mechanical and aerodynamic design features.						
4	Design aspects and consideration of turbine, compressor and bearing systems.						
5	Failure m	4					
6	Waste gar	ting, variable geometry and multistage turbocharging.	4				
7	Turbo ins	stallation.	4				
8	Recent de	4					
Textbook Fundamentals of Turbocharging, Nicholas C.Baines.							

Department	Mechanical Engineering	Major	1	Automotive Mechanic				nics
Course Name	Advanced topics in automotive technology	Course Code		MMEV482				
D		Credit Hours		2		СТН		2
Prerequisites		CRH	L	2	P	0	T	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

This course deals with the analysis of technological trends in the automotive industry and how technological changes may affect the future technician's job duties, manager's decisions, how business and society will adapt to emerging technology and society as a whole. To promote understanding of the course content, course projects, study of engineering functions and collection of technical data may be integrated when appropriate.

Topics:

- Applications of advanced and smart materials in modern vehicles.
- How aerodynamics affects modern car design.
- Advanced topics in an internal combustion engine (ICE).

References: Dhananjay Kumar Srivasta and others (Editors), Advances in internal combustion engines research, ISBN 2522-8366.

	Detailed of Theoretical Contents							
No.								
1	Advanced top	ics in the following:	32					
	top lov end 2- Mo aen fue 3- Ad on ele MI	dvanced internal combustion engine (ICE). The objective of this pic is to provide knowledge on development of a high efficiency, we emissions and low fuel consumption engine utilizing renewable ergy sources such as hydrogen fuel, biogas fuel or new techniques. Odern cars exterior design. The objective of this topic is focusing on rodynamics and shape design, which affects engine efficiency and el consumption. Ivanced and smart materials. The objective of this topic is focusing new materials used in manufacturing new car parts, such as extromagnetic bearing, electromagnetic damper, MRF damper and RF gearbox.						
Те	ISE	. Paulo Davim Editor, Modern Mechanical Engineering, 3N 978-3-642-45176-8. Sanford L. Moskowitz, Advanced materials innovation, ISBN 04705	08922.					
	3-]	Peter L. Reece smart materials and structures, new research, ISBN 1-	-60021-107-0					

Appendix Laboratory Equipment, Workshops and Laboratories

No.	Laboratory name / workshop	Capacity of training	Number of trainers	Training courses benefiting from the laboratory / workshop / lab
1	Thermodynamics Lab	15	1	Thermodynamics course
2	Fluid Mechanics lab	15	1	Fluid Mechanics course
3	Vibration lab	15	1	Vibration Mechanics course
4	Internal Combustion Engines lab	15	1	Internal Combustion Engines course
5	Principle of control lab	15	1	Principle of control
6	Advance Engines Management lab	15	1	Advance Engines Management Course
7	Vehicle Dynamics lab	15	1	Vehicle Dynamics Course
8	Vehicle Design lab	15	1	Vehicle Design Course
9	Hydraulic and pneumatic Lab	15	1	Hydraulic and pneumatic system Course
10	Hybrid Vehicles lab	15	1	Alternative fuels and Hybrid –electric Vehicles Course

List of Detailed Equipment for Each Laboratory, Workshop or Lab

	Thermodynamics Lab						
No.	No. Product's Name						
1.	Free and Force Heat transfer device	1					
2.	Linear and Radial Heat transfer device	1					
3.	Radiation Heat transfer device	1					
4.	Heat exchanger device	1					
5.	Heat measurements sensors	1					

	Vibration Lab		
No.	Product's Name	Quantity	
1	Free and Forced Vibration Apparatus	1	
2	Torsional Vibration Apparatus	1	

	Internal Combustion Lab	
No.	Product's Name	Quantity
1	Engine dynamometer	1

	Principle of control Lab	
No.	Product's Name	Quantity
1	Automation Studio Software	1

	Advance Engines Management lab		
No.	Product's Name	Quantity	
1	Automotive electric and electronic integrated components interface system	1	
2	Oscilloscope	1	
3	OBD II Tester	1	
4	Automatic Transmission Dynamometer	1	

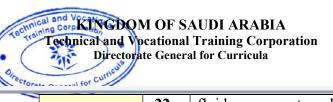
Vehicle Dynamics lab		
No.	Product's Name	Quantity
1	Vehicle dynamics simulator	1
2	Chassis Dynamometer	1
3	Adams Software	1
4	TCS /ABS / ASC Simulator	1

	Vehicle Design Lab	
No.	Product's Name	Quantity
1	Solidworks Software	1

	Hybrid Vehicles Lab	
No.	Product's Name	Quantity
1	Hybrid Simulator	1

	Hydraulic and pneumatic Lab	
No.	Product's Name	Quantity
1	Hydraulic Apparatus	1
2	Pneumatic Apparatus	1

	Fluid Mechanics lab		
No.	Product's Name	Quantity	
1	Manometer	1	
2	Bernoulli Theorem Demonstration	1	
3	Hydraulic Bench	2	
4	Hydrostatic Pressure	1	
5	Dead Weight Calibrator	1	
6	Horizontal Osborne -Reynolds Demonstration	1	
7	Orifice and Free Jet Flow	1	
8	Flow meter Demonstration	1	
9	Hydrostatic Bench	1	
10	Pressure measurement unit	1	


Fluid Mechanics lab		
No.	Product's Name	Quantity
11	Energy losses in pipes	1
12	Flow over wire	1

References

	1.	College physics by Serway and Faughn.
	2.	Thermodynamics: An Engineering Approach. Yunus Cengel / Michael Boles
		ISBN10/13: 0077986695 / 0-07-798669-5.
	3.	Automobile Electrical and Electronic Systems, Tom Denton, Fourth Edition
	4.	Engineering Mechanics-Statics, Hibbeler, R.C.13th Edition, Pearson Prentice Hall, 2015, ISBN-13: 978-0133918922.
	5.	Heywood, John B. Internal combustion engine fundamentals. (McGraw-Hill series in mechanical engineering) Bibliography: p. Includes index. I. Internal combustion engines. I. Title. 11. Series. TJ755.H45 1988 621.43 87-15251.
	6.	Feedback systems: an introduction for scientists and engineers / Karl Johan Åström and Richard M. Murray p. cm. Includes bibliographical references and index. ISBN-13: 978-0-691-13576-2 (alk. paper).
	7.	Mechanics Of Materials, Ninth Edition, R. C. HIBBELER.
	8.	Beucher, O., and Weeks, M., Introduction to Matlab and Simulink, A Project Approach, 3rd edition, Infinity Science Press, 2007.
	9.	Applied Fluid Mechanics, 6/E. Robert L. Mot.
		ISBN10/13: 0131146807/9780131146808.
Textbooks	10.	Automotive mechatronics, (Bosh2015) Halderman, J. & Linder, J. (2012). Automotive Fuel and Emissions Control Systems (3rd Edition) Upper Saddle River, NJ: Pearson Education. [ISBN 13:978-0-13-254292-0].
	11.	Halderman, J. D. (2011). Diagnosis &Troubleshooting of Automotive Electrical, Electronic, & Computer Systems (6th Edition) Upper Saddle River, NJ: Pearson Education. [ISBN 13:978-0132551557].
	12.	Fundamentals of Vibrations, Leonard Meirovitch.
	13.	Mechanical Vibrations, Singiresu S. Rao.
	14.	Vehicle Noise, Vibration, and Sound Quality, Gang Sheng.
	15.	Noise, Vibration, and Harshness. (Volkswagen of America, Inc.Service Training Printed in U.S.A.Printed 03/2005, Course Number 861503)
	16.	Practical user manuals Solidworks essentials training.
	17.	Fundamentals of Turbocharging, Nicholas C. Baines.
	18.	Schaeffer, John, The Complete Guide to Renewable Energy Technologies and Sustainable Living (30th Ed.). Real Goods Solar Living Sourcebook, 2007.
	19.	Faye C. M. et. al. Heating Ventilation and Air Conditioning: Analysis and Design, Wiley, ISBN 978-0471470151, 2004.
	20.	P. G. Down, Heating and cooling load calculations, 2008.
	21.	Automotive mechatronics, Conrad Reifed.

22.	fluid power system dynamics, William Durfee, Zongxuan Sun and James Van
	De Ven.
23.	Fundamentals of vehicle dynamics by Thomas D. Gillesnie.
24.	Toyota Hybrid System, Toyota Motor Corporation, Public Affairs Division 4-8
	Koraku 1-chome,Bunkyo-ku, Tokyo, 112-8701 Japan.
	Hybrid and Alternative Fuel Vehicles, Second Edition, James D. Halderman &
	Tony Martin, Prentice Hall, 2011.
	Hybrid and Alternative Fuel Vehicles (3rd Edition) [Paperback] James D. Halderman.
25.	Automotive Workshop Design Equipment Installation, ©2011 Alemlube Pty Ltd.
	REMA TIP TOP GmbH Business Unit Automotive 85586 Poing/Germany,
	design, construction and equipment of modern workshop.
	AUTOMOTIVE WORKSHOP SAFETY, Fix the Risks Work Safe.